G
GetLLMs

Dawnsmith AI Image Generation

Discover Dawnsmith, an AI image generation model that transforms text prompts into captivating visuals. See what makes this AI model special!

Platform: Replicate
Image SynthesisPrompt-Based GenerationLoRA StylingInpainting Tool
21 runs
H100
License Check Required

🚀Function Overview

Generates and manipulates images using text prompts with support for style control, inpainting, resolution adjustments, and custom LoRA model integration.

Key Features

  • Text-to-image generation with prompt guidance
  • Image inpainting and editing using masks
  • LoRA (Low-Rank Adaptation) support for style/object customization
  • Dual model options (dev/schnell) for quality vs speed tradeoffs
  • Resolution/aspect ratio configuration
  • Safety checker toggling and output format control

Use Cases

  • Creating digital art from textual descriptions
  • Editing specific areas of images via inpainting
  • Applying artistic styles using custom LoRAs
  • Producing images at specific resolutions or aspect ratios
  • Rapid prototyping with fast-generation model variant

⚙️Input Parameters

prompt

string

Prompt for generated image. If you include the `trigger_word` used in the training process you are more likely to activate the trained object, style, or concept in the resulting image.

image

string

Input image for image to image or inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored.

mask

string

Image mask for image inpainting mode. If provided, aspect_ratio, width, and height inputs are ignored.

aspect_ratio

string

Aspect ratio for the generated image. If custom is selected, uses height and width below & will run in bf16 mode

height

integer

Height of generated image. Only works if `aspect_ratio` is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation

width

integer

Width of generated image. Only works if `aspect_ratio` is set to custom. Will be rounded to nearest multiple of 16. Incompatible with fast generation

prompt_strength

number

Prompt strength when using img2img. 1.0 corresponds to full destruction of information in image

model

string

Which model to run inference with. The dev model performs best with around 28 inference steps but the schnell model only needs 4 steps.

num_outputs

integer

Number of outputs to generate

num_inference_steps

integer

Number of denoising steps. More steps can give more detailed images, but take longer.

guidance_scale

number

Guidance scale for the diffusion process. Lower values can give more realistic images. Good values to try are 2, 2.5, 3 and 3.5

seed

integer

Random seed. Set for reproducible generation

output_format

string

Format of the output images

output_quality

integer

Quality when saving the output images, from 0 to 100. 100 is best quality, 0 is lowest quality. Not relevant for .png outputs

disable_safety_checker

boolean

Disable safety checker for generated images.

go_fast

boolean

Run faster predictions with model optimized for speed (currently fp8 quantized); disable to run in original bf16

megapixels

string

Approximate number of megapixels for generated image

lora_scale

number

Determines how strongly the main LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora.

extra_lora

string

Load LoRA weights. Supports Replicate models in the format <owner>/<username> or <owner>/<username>/<version>, HuggingFace URLs in the format huggingface.co/<owner>/<model-name>, CivitAI URLs in the format civitai.com/models/<id>[/<model-name>], or arbitrary .safetensors URLs from the Internet. For example, 'fofr/flux-pixar-cars'

extra_lora_scale

number

Determines how strongly the extra LoRA should be applied. Sane results between 0 and 1 for base inference. For go_fast we apply a 1.5x multiplier to this value; we've generally seen good performance when scaling the base value by that amount. You may still need to experiment to find the best value for your particular lora.

💡Usage Examples

Example 1

Input Parameters

{
  "model": "dev",
  "prompt": "A beautiful animated-style woman, Joy,  stands barefoot on the grassy edge of a still lake at sunrise. She wears a flowing white summer dress that catches the soft breeze. Her long blonde hair is gently tousled, and her expression is peaceful, joyful, and radiant. Behind her is a rustic wooden cabin nestled among pine trees. A golden canoe floats nearby on the calm, mirror-like water reflecting the glowing morning sky. The mist rises gently off the lake, and warm golden sunlight bathes the entire scene. The background is softly illustrated, matching the stylized art style. Scene is peaceful, cinematic, and emotionally rich. --ar 16:9 --v 5 --style cute --q 2",
  "go_fast": false,
  "lora_scale": 1,
  "megapixels": "1",
  "num_outputs": 4,
  "aspect_ratio": "16:9",
  "output_format": "webp",
  "guidance_scale": 3,
  "output_quality": 67,
  "prompt_strength": 0.56,
  "extra_lora_scale": 1,
  "num_inference_steps": 36
}

Output Results

https://replicate.delivery/xezq/9X1cIfhSvwW7YS2igD26WTqqcfQImhEMjk6QYPjPkvDvB6oUA/out-0.webp
https://replicate.delivery/xezq/Skbj1oKSjtKTC568DzVHjXZjOW1UuSkTe8DEeSfEvIoeGojSB/out-1.webp
https://replicate.delivery/xezq/5Ml6qVFiEU5ROR1jYk1yaga7grAX5pKcIgQOoUVAYiybgOKF/out-2.webp
https://replicate.delivery/xezq/nbtH67Rp2Db0HheO8TheYBsAd2mGMsmPv62U2FXkPfDfGojSB/out-3.webp