G
GetLLMs

RealVisXL V3 Multi-ControlNet LoRA

Discover RealVisXL V3, a powerful image generation model with multi-controlnet, LoRA support, and inpainting functionality.

Platform: Replicate
Controlled Image GenerationImage InpaintingMulti-ControlNetImage-to-Image Transformation
54 runs
L40S
License Check Required

🚀Function Overview

A sophisticated image generation model that integrates multiple control networks, LoRA weights, and editing capabilities for complex image manipulation.

Key Features

  • Multi-controlnet support for layered image conditioning
  • Image-to-image transformation capabilities
  • Inpainting functionality with masking
  • LoRA weight integration for fine-tuned results
  • Adjustable parameters for resolution, denoising, and guidance scale
  • Support for various schedulers and refinement options

Use Cases

  • Artistic image generation based on text prompts
  • Editing existing images through inpainting
  • Style transfer using control networks
  • Creating illustrations with precise structural guidance
  • Batch generation of multiple image variations

⚙️Input Parameters

prompt

string

Input prompt

negative_prompt

string

Negative Prompt

image

string

Input image for img2img or inpaint mode

mask

string

Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.

width

integer

Width of output image

height

integer

Height of output image

sizing_strategy

string

Decide how to resize images – use width/height, resize based on input image or control image

num_outputs

integer

Number of images to output

scheduler

string

scheduler

num_inference_steps

integer

Number of denoising steps

guidance_scale

number

Scale for classifier-free guidance

prompt_strength

number

Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image

seed

integer

Random seed. Leave blank to randomize the seed

refine

string

Which refine style to use

refine_steps

integer

For base_image_refiner, the number of steps to refine, defaults to num_inference_steps

apply_watermark

boolean

Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.

lora_scale

number

LoRA additive scale. Only applicable on trained models.

lora_weights

string

Replicate LoRA weights to use. Leave blank to use the default weights.

disable_safety_checker

boolean

Disable safety checker for generated images. This feature is only available through the API.

controlnet_1

string

Controlnet

controlnet_1_image

string

Input image for first controlnet

controlnet_1_conditioning_scale

number

How strong the controlnet conditioning is

controlnet_1_start

number

When controlnet conditioning starts

controlnet_1_end

number

When controlnet conditioning ends

controlnet_2

string

Controlnet

controlnet_2_image

string

Input image for second controlnet

controlnet_2_conditioning_scale

number

How strong the controlnet conditioning is

controlnet_2_start

number

When controlnet conditioning starts

controlnet_2_end

number

When controlnet conditioning ends

controlnet_3

string

Controlnet

controlnet_3_image

string

Input image for third controlnet

controlnet_3_conditioning_scale

number

How strong the controlnet conditioning is

controlnet_3_start

number

When controlnet conditioning starts

controlnet_3_end

number

When controlnet conditioning ends

💡Usage Examples

Example 1

Input Parameters

{
  "image": "https://replicate.delivery/xezq/odRRGCQC6eXETiWAfO7HyjrKwuNfwG4PZ0tbLBOPC62uyPjpA/out-0.webp",
  "width": 768,
  "height": 768,
  "prompt": "living room, modern interior design, a functional space, white walls, matte gray floor, black and white colors, geometric shapes, modular furniture, steel and glass, and modern design elements",
  "refine": "no_refiner",
  "scheduler": "K_EULER",
  "lora_scale": 0.6,
  "num_outputs": 1,
  "controlnet_1": "lineart_anyline",
  "controlnet_2": "none",
  "controlnet_3": "none",
  "guidance_scale": 7.5,
  "apply_watermark": false,
  "negative_prompt": "",
  "prompt_strength": 1,
  "sizing_strategy": "input_image",
  "controlnet_1_end": 0.8,
  "controlnet_2_end": 1,
  "controlnet_3_end": 1,
  "controlnet_1_image": "https://replicate.delivery/xezq/odRRGCQC6eXETiWAfO7HyjrKwuNfwG4PZ0tbLBOPC62uyPjpA/out-0.webp",
  "controlnet_1_start": 0,
  "controlnet_2_start": 0,
  "controlnet_3_start": 0,
  "num_inference_steps": 30,
  "controlnet_1_conditioning_scale": 0.8,
  "controlnet_2_conditioning_scale": 0.75,
  "controlnet_3_conditioning_scale": 0.75
}

Output Results

https://replicate.delivery/xezq/afnfeCZgpCIdgI8Bj4rP4k1caH3weWNo5EeWhACSZWqm1fZMF/control-0.png
https://replicate.delivery/xezq/w6G0XoeSVFWgQCKNGjpUfTt61STWz5GPegAL5OepOpux6fMmC/out-0.png

Quick Actions

Technical Specifications

Hardware Type
L40S
Run Count
54
Commercial Use
Unknown/Restricted
Platform
Replicate

Related Keywords

Multi-ControlNet Image GenerationImage-to-Image TransformationImage InpaintingLoRA Weight IntegrationArtistic Image GenerationStyle Transfer